千帆小说 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

写下标题和引言后,徐川开始步入正文。

“.....引用潘荣华与张伟哲两位教授的‘热导率的可压缩navier-stokes方程论文’,在此基础上对将初值条件进行放宽。”

“则(v?,u?,θ?)(x)∈H1*H2*H2变为(v?,θ?)∈H1?(0,1),uo∈H1?(0,1)......”

“存在一些正常数C和没有η?>0,使得对于任何(x,t)∈(0,1)(0,∞)。”

“可得Cˉ1≤u(x,t)≤C,Cˉ1≤θ(x,t≤C),及||(u-∫1?u?dx,u,θ-∫1?u?dx)(·,t)||H1(0,1)≤Ceˉηt.......”

........

书房中,徐川开始了对NS方程的探索。

这是一个横跨了三个世纪的难题,要解决它,难度超乎想象。

从圣维南与斯托克斯在1845年独立提出粘性系数为一常数的形式方程,并命名为Navier-Stokes方程后,两个世纪以来研究它的数学家和物理学家繁多如过江之鲫。

然而在上面取得重大突破的,却寥寥无几屈指可数。

目前的数学界,在NS方程上的最大进度,还是他在普林斯顿的时候和费弗曼一起推进的阶段性成果。

做到了能在在曲面空间中,给定一个初始条件和边界条件,确定解的存在。

而现在,徐川要将其更进一步的推进,做到是给予一个有限界域与具有Dirichlet边界的条件,在三维空间中,Navier-Stokes方程存在实解,且解光滑。

如果能做到这一步,差不多就能够给可控核聚变反应堆腔室中的等离子体湍流建立一个数学模型并利用超级计算机进行控制运算了。

对于徐川来说,他目前并不期盼解决NS方程什么的,那并不是什么靠谱的好主意。

NS方程从提出到现在已经近两百年了,它依旧如一座看不到尽头的高峰般巍然屹立。

无数的登山者甚至连山脚都没有接近,人们看不到它的山顶,只能远远的隔着迷雾眺望一眼。

徐川也不敢说自己有生之年就能完成NS方程的求解。

不仅仅是因为它难,更是因为它是一个庞大的系统性工程。

克雷研究所定义的‘三维空间中的N-S方程组光滑解的存在性问题’只不过是NS方程的前奏而已。

......

别墅中,徐川已经有超过一周的时间没有出门了。

他对NS方程的推进在一开始还算顺利,偏微分方程本就是他上辈子的研究领域之一,再加上这辈子将数学作为主修的领域,在这一块,他已经成功超越了上辈子走出去了更远的距离。

但这并不能让他在NS方程上一帆风顺的走下去,在两天前,他陷入了一个瓶颈中,目前依旧还在寻找办法解决这个难题。

书房中,徐川皱着眉头盯着稿纸上的算式。

“U``=-(1/v)(1-cosA)U。”

这是一个很简单的公式,是以函数为系数的谐波方程,是从陈至达的变形张量S R分解理论对于零压力梯度的壁面流动,得到速度剖面U(y)理论方程中形变而来的。

由这个方程可得,随着壁面距离的增大,湍流的尺度是从超高波数的微小尺度演化为趋于零波数的超大尺度。

在一般情况下,它几乎可以代替欧拉方程适用于所有的湍流,得到普遍有效的方程组。

此外,对于这个方程,已经证实的是,普朗特的对数律速度就是方程的理论解。

因此,可以认为:对于理想的壁面流动,理论解与实验解是吻合的。

简单的来说,就是在理想情况下,通过数学公式计算出来的湍流运行状态与实际运行是一模一样的。

能做到这个,就完全可以用来建立数学模型,实现对湍流的预判和控制。

但是,它有一个致命的问题!

那就是湍流区域是cosA从不能近似为1演化到接近于0的区域的,且普遍有效的解析解是难于得到的。

这对于形状怪异的可控核聚变反应堆腔室来说,是最为致命的点。

徐川想找到一个可以补足或者代替的方法,但至今未能做到。

更关键的是,数学上,严格的加速度公式是用李导数来证明的。

因此,用S R导出的微元体加速度与李导数虽然在本质上一致,但是在力学(物理)解释上区别很大。

而目前科学界普遍接受的是基于李导数的欧拉方程,或是NS方程。

因此,对于这里给出的壁面流方程以及湍流的普遍方程,在理论界几乎没有支持性文献。

也就是说,徐川想要查阅借鉴一下以前的文献论文都做不到。

这是一个几乎全面空白的领域。

.......

书房中,将手中的稿纸揉成一团抛到一边的垃圾桶中后,徐川盯着崭新的A4纸长舒了一口气。

自从推导进入瓶颈后,他被困在这个问题上差不多已经十来天了,但一无所获。

当然,也不能完全这样说,至少这十来天他排除掉了多种不能用的方法。

摇了摇头,刚准备继续下笔,但想了想后,他又将手中的笔丢到了一边。

这章没有结束^.^,请点击下一页继续阅读!

喜欢大国院士请大家收藏:(www.qianfanxs.com)大国院士千帆小说更新速度全网最快。

千帆小说推荐阅读: LOL:这个男人来自外卡剑仙她以理服人繁星如你穿书之系统助我成女主玄幻:是你们逼我称帝的四合院我有金手指四合院:开局相亲,秦淮茹慌了重生八六娇妻她又野又飒离谱!谁把校花塞我后备箱里了?快跑,宿主她不对劲爸,公司都上市了,你还没及格?折月天师云游,回山发现家被偷了柯南里的不柯学侦探开局签到镇狱神体在吞噬星空当中研究万物争霸诸天:开局三千锦衣卫!诸天之从黑心虎开始火影:宇智波公主是理科生清末之风云诡谲快穿之消除外来者大夏文圣柯南:过于热爱特摄斗罗:开局契约比比东!穿越皇帝,开局满朝奸佞闹腾诸天,不正经的系统诸天商贩:开局十元卖如来神掌诡异降临:开局获得BOSS模板那年风雪凉四合院:开局被娄晓娥追尾恋综神秘嘉宾是电竞大神带着超市重返年代权游之最强国光木叶执法官大魏风华:穿越三国之我是曹叡武侠:我会的武功有点多遮天,狠人傲世行九十九岁那年,我的福报来了重生后,我成了厂公的掌心娇宠穿书九零,大佬的炮灰前妻觉醒了诸天:从地球穿越盘龙之初开始大秦:摊牌了,我是秦始皇穿书虐文养成秀才小相公的日常直播山村的悠闲生活冒险在异世界全球灾难:签到就变强谍战:我的潜伏日记三国:汉献帝居然会武功吞噬星空之战神崛起直播卖凤梨,你却盯上我的农具?
千帆小说搜藏榜: 谍海幽灵:第二次世界大战主要间谍综合都市剧从三十而已开始斗罗:和我绑定生死,比比东急了光系只能辅助?我化身光之锯人开局带着三千死士,进入建筑工地我的现实长生游戏战国之燕行天下八零辣妻:团宠文对照组不干了!长生从打更人开始四合院:开局苟到神级任务系统高考而已,你问我如何长生?惹爱生非武林帝国异能觉醒之百兽女王洪荒打工人,只想早日退休养老天才酷宝:大佬宠妻太强悍都市高武:我在异界杀伐决断九叔首徒,一剑开天门不过分吧!四合院:开局被娄晓娥追尾权游之圣焰君王从吞噬开始简化修行王妃全身都写着拒绝宫斗这学姐,也太正常了吧!团宠锦鲤靠好运征服全世界进击的大陆开局签到镇狱神体Be后我成了纸片人的黑月光超甜!重生后左相被我撩到腿软超神之我是天宫王华烨创建一所修仙大学重生九零:炮灰肥妻要翻身奶爸:刚失业,校花女神带娃堵门摊牌了,我就是一位至高神诸天从挖傻柱根基开始吞噬星空,我可以模拟人生旧日呓语我靠直播带全村致富了在吞噬星空当中研究万物我在奥特开宗门我在火影练气长生反派小媳妇的逆袭指南这个明星太猛了港综:大佬擎天柱,我只想揾正行抽取诸天材料,合成超神卡牌狂野1995天命执刀人四合院:我的替换人生斗破:我能升级万物华娱:欠债两亿的我被迫顶流星际大佬在荒野求生综艺爆红
千帆小说最新小说: 遮天:开局帝尊邀我成仙御兽从零分开始我的替身是史蒂夫凶狠系男神神父马维大明:哥,和尚没前途,咱造反吧这个锦衣卫明明超强却过分划水影视世界从做厨师开始女尊世界的钓系美少年诸天之百味人生文娱之顶流艺术家密特拉之契剑仙她以理服人红楼之贾环厉害了从搭上NBA末班车开始邪能并不会欺骗你四合院:情义十字路海贼之我的搭档是艾斯德斯贵妃她娇又媚,疯批暴君拿命宠重生80年代吞噬进化:我重生成了北极狼影视从四合院阎解成开始咸鱼一家的穿书生活明末逐鹿天下于是我去了斗罗仙人消失之后破产大明星步步生娇他似人间妄想奉天承运,斩妖除魔从山海经复苏开始凡人:我,厉飞雨,属性修仙!穿成幻蝶后,我苟成了斗罗团宠我是导演,我不比烂美漫之开局融合祖国人狼人杀:请开始你的表演在霍格沃茨读书的日子超人的赛亚人弟弟谍海孤雁我的老婆是执政官我能提取万物属性点神隐山海经无敌从全职法师开始大国院士吾弟大秦第一纨绔大理寺卿的江湖日常扼元震惊!四十才发现自己是天籁之音我在末日文字游戏里救世温教授,你家的小作精她甜又野